Die 5 IoT Trends 2021

Industrial IoT, das industrielle Internet der Dinge, mit dem die Vernetzung von Maschinen, Produktionsanlagen und Gebäuden ermöglicht wird, ist aktuell durch fünf relevante Themen geprägt. Die Unternehmensberatung MM1 gibt einen Überblick über die aktuell prägendsten Technologietrends im industriellen Umfeld.
Bild: ©your123/stock.adobe.com

Die intelligente, vernetzte Fabrik

Kundenindividuelle Produkte steuern sich selbst durch die Fertigung. Fahrerlose Transportsysteme übernehmen die Intralogistik an die jeweils optimale Produktionseinheit, in welcher die Prozesse autonom oder in Kollaboration zwischen Mensch und Roboter zuverlässig ausgeführt werden. Zukunftsvision? Nein, denn bereits seit zehn Jahren ist Industrie 4.0 der zentrale Trend in der Produktion, welcher beispielsweise durch die zunehmende Hyperautomatisierung oder das Edge Computing gestützt wird. Vorausschauende Wartung (Predictive Maintenance), kontinuierliche Zustandsüberwachung und datenbasierte Optimierung und Steuerung (Condition-based Monitoring), flexible und modulare Prozesse – Industrie 4.0 im Sinne einer intelligenten sowie vernetzten ‚Smart Factory‘ befähigt zu einer Vielzahl an Möglichkeiten zur Steigerung der Wettbewerbsfähigkeit. Die Grundlage hierfür bildet das erfolgreiche Verknüpfen von KI und IoT zur Realisierung von neuen Geschäftsmodellen sowie Prozessoptimierungen durch Smart Connected Products oder Solutions. Ergebnisse einer erfolgreichen digitalen Transformation äußern sich z.B. in einer gesteigerten Liefertreue, kürzeren Durchlaufzeiten, einer effizienteren Ressourcennutzung, geringeren Beständen sowie einer erhöhten Prozesstransparenz.

Maschinelles Lernen im Kontext von IoT

Selbstlernende Algorithmen werden der vorliegenden Daten immer intelligenter und unterstützen Tätigkeiten in der Industrie. Maschinelles Lernen als konkrete Ausprägung der sogenannten ’schwachen‘ künstlichen Intelligenz ermöglicht selbstlernenden Algorithmen, große Datenmengen (Big Data) zu analysieren, Muster zu erkennen, Prozesse zu optimieren und neue Lösungen zu finden. Maschinelles Lernen wird durch ‚Edge Computing‘ verstärkt: Berechnungen werden örtlich nah an der Quelle der Datenerzeugung durchgeführt und sind so effizienter, robuster und reaktionsfähiger (Stichwort ‚Echtzeitfähigkeit‘). Maschinelles Lernen kann in Supervised Learning, Unsupervised Learning und Reinforcement Learning unterteilt werden, wobei jede Art für unterschiedliche Fragestellungen passend ist. Relevant im industriellen Kontext ist z.B. die Bilderkennung von Dingen in der Produktion, welche durch Klassifizierungsalgorithmen realisiert werden kann. Industrieunternehmen, die maschinelles Lernen wertgenerierend einsetzen wollen, brauchen aber nicht nur leistungsstarke Rechner, die Daten in Insights verwandeln. Sie benötigen auch die entsprechende Infrastruktur, eine passende Governance und eine zielgerichtete Datenstrategie: ‚Data to Value‘.

Proaktive Absicherung vernetzter IoT-Devices

IT-Security-Risiken sind seit vielen Jahren bekannt und als größtes Geschäftsrisiko für Unternehmen weltweit nach wie vor wichtig. Spymails, DDos-Angriffe, Phishing – das sind bekannte Angriffsszenarien, deren Risikomechanismen auf IoT-Netze übertragbar sind und hier ebenfalls berücksichtigt werden müssen. Im Industriebereich ist die Berücksichtigung einer ausreichenden I(o)T-Security ein unausweichliches Thema. Knowhow-Diebstahl, Produktionsausfälle sowie der damit verbundene finanzielle Schaden erfordern ausreichende Schutzmechanismen. So betrugen die Folgeschäden von Cyberangriffen auf Industrieunternehmen in Deutschland im Jahr 2019 ca. 102,9 Milliarden Euro. In IoT-Netzwerken ist jedes zusätzliche Element ein weiterer potenzieller Angriffspunkt und muss durch aktive Maßnahmen abgesichert werden. Im Zuge der zunehmenden Anwendung von KI im IoT-Kontext müssen drei Perspektiven evaluiert werden, um potenzielle Folgerisiken abzuwehren: Wie schütze ich KI-basierte Systeme? Wie nutze ich KI zur verbesserten Absicherung? Wie kann ich die Nutzung von KI durch potenzielle Angreifer proaktiv abwehren?

Seiten: 1 2Auf einer Seite lesen

Das könnte Sie auch Interessieren

Bild: Gorodenkoff - stock.adobe.com
Bild: Gorodenkoff - stock.adobe.com
Konkrete Vorteile durch TSN für die Industrie

Konkrete Vorteile durch TSN für die Industrie

Das Potenzial von transformativen Digitaltechnologien gemäß Industrie 4.0 ist in der Industrie unumstritten. Allerdings ist das damit verbundene große Datenaufkommen ein zweischneidiges Schwert: Einerseits bergen diese Datenmengen ein Potenzial, das in Form wertvoller Informationen zur Prozessoptimierung verwendet werden kann. Andererseits drohen diese Datenmengen, sofern sie nicht gut gehandhabt werden, zu einer Datenflut anzuwachsen, die Unternehmen überfordert und somit mehr Probleme schafft, als sie löst.

Bild: ©jamesteohart/shutterstock.com / Softing Industrial Automation GmbH
Bild: ©jamesteohart/shutterstock.com / Softing Industrial Automation GmbH
Maschinenkonnektivität – als Teil von Edge Computing

Maschinenkonnektivität – als Teil von Edge Computing

Edge Computing ist ein Trendthema in der industriellen Produktion. Ausgehend von einer Definition des Begriffs Edge beschreibt dieser Artikel den aktuellen Stand der Technologie- und Marktentwicklung rund um Industrial Edge Computing. Besondere Berücksichtigung finden der Zusammenhang von Maschinenkonnektivität und Edge, sowie Fragen nach Betriebskonzepten und Skalierbarkeit von Industrial-IoT-Lösungen.

Bild: VDMA e.V.
Bild: VDMA e.V.
Von der Datatur 
zur Datokratie

Von der Datatur zur Datokratie

Maschinenbau und Elektrotechnik bilden die zwei Standbeine der industriellen Produktion. Zusammen stehen beide Branchen hierzulande für über 10.000 Unternehmen und über zwei Millionen Beschäftigte. Deutschland bildet folglich bislang das Gravitationszentrum und die Innovationsquelle der industriellen Automatisierung. Dass das in Zeiten der smarten Fabrik so bleibt, dafür soll das Datenökosystem Manufacturing-X sorgen.

Bild: TeDo Verlag GmbH
Bild: TeDo Verlag GmbH
Der Digital Twin 
im Mittelpunkt

Der Digital Twin im Mittelpunkt

Die sechste Ausgabe der Stuttgarter Innovationstage am 28. Februar und 1. März stand ganz unter dem Leitthema des digitalen Zwillings. Weil der Begriff so vielschichtig ist und oft unterschiedlich interpretiert wird, ging der
Kongress sowohl auf Grundlagen zur Definition ein als auch auf konkrete Einsatzmöglichkeiten in der Produktion. Anwendungsbeispiele und Referenzen wurden ergänzt um aktuelle Projekte aus der Forschung. Kernbestandteil war in diesem Jahr ebenfalls wieder die ausgiebige Möglichkeit für Diskussion und Networking sowie ein Blick hinter die Kulissen des Veranstalters – in die Maschinenhalle des Instituts für Steuerungstechnik der Werkzeugmaschinen und Fertigungseinrichtungen der Universität Stuttgart (ISW).

Bild: ©Enrique del Barrio/stock.adobe.com
Bild: ©Enrique del Barrio/stock.adobe.com
Erschwerte Bedingungen

Erschwerte Bedingungen

Es sind eigentlich einfache Gesetze der Mechanik. Die falsche Kombination der wichtigen Parameter – Last, Hebel und Neigungswinkel – die dazu führen können, dass es zu Unfällen mit mobilen Arbeitsmaschinen kommt. Hohe Kosten und im schlimmsten Fall Personenschäden können die Folge sein. Der Einsatz von Sensoren und messtechnischen Lösungen integriert in die mobilen Maschinen kann dazu beitragen, Unfälle zu verhindern.